Agricultural Price Analysis and Forecasting

This book emphasizes market and price analysis using agricultural examples. The focus of the book is on the application of econometrics and will help those going into fields involving market analysis and forecasting. The blend of theory and application is unique. Friendly and readable, Agricultural Marketing and Price Analysis presents a comprehensive approach to agricultural price analysis, agricultural market structures, and agricultural marketing strategies. The authors engage students with very little exposure to economics and with only a basic grasp of algebra. The text utilizes a fresh approach and supplies thorough coverage of core topics, as well as complex topics such as general equilibrium models, game theory, and econometrics. It also provides an introduction to data analysis and incorporates many examples. Supplemental materials are available for additional practice and further exploration. Unique to the Second Edition is the inclusion of a chapter on consumer behavior and food preferences, as well as relevant areas of research. The authors introduce readers to the agricultural supply chain, including forecasting and inventory management. Succinct and approachable, this text sets the stage for an enjoyable and effective learning experience. This book shows how decisions made by individual farmers influence the efficiency of agricultural markets. Unless farmers properly take account of the correlation between prices and yields in forming their price forecasts, competitive markets will often be socially inefficient, leading to misallocation of resources. The authors demonstrate that a simple and practical price forecasting rule, based on expected per unit revenue, is generally adequate to ensure efficient market behavior. Time-series data from various countries are used to test the hypothesis that market supply is influenced by the correlation of price and yield as well as by lagged market prices. The importance of market inefficiencies in risky situations is shown to depend on the variability of yields, the nature of farmers'price forecasting behavior, the degree of private risk aversion, and the elasticity of demand. The authors suggest and evaluate three basic policy approaches governments may take when confronted with very inefficient markets—establishing production quotas, improving market information services, and implementing price stabilization schemes. They conclude by discussing implications of the study for the specification of agricultural supply models and for the economic appraisal of risky investment projects. Uses a problem solving framework to provide students with the means for acquiring the necessary skills in the application of economic theory. Enables them to understand that economic theory does describe authentic relationships by actual people in the existing world. Wholesale and retail food price forecasts are useful to farmers, processors, wholesalers, consumers, and policymakers alike, as the structure and environment of food and agricultural economies are continually evolving. USDA's Economic Research Service analyzes food prices and provides 12- to 18-month food price forecasts for 7 farm, 6 wholesale, and 19 retail food categories. In 2011, ERS's forecasting procedure was updated to employ a vertical price transmission method that incorporates input prices at each stage of production. Where this is not possible, an
autoregressive moving average approach is used. This report provides a detailed description of the revised methodology as well as an analysis of the overall accuracy and performance of individual forecasts. The revised forecasting methods show modest increases in forecast accuracy compared with simple univariate approaches previously used by ERS. Recent economic growth in China and other Asian countries has led to increased commodity demand which has caused price rises and accompanying price fluctuations not only for crude oil but also for the many other raw materials. Such trends mean that world commodity markets are once again under intense scrutiny. This book provides new insights into the modeling and forecasting of primary commodity prices by featuring comprehensive applications of the most recent methods of statistical time series analysis. The latter utilize econometric methods concerned with structural breaks, unobserved components, chaotic discovery, long memory, heteroskedasticity, wavelet estimation and fractional integration. Relevant tests employed include neural networks, correlation dimensions, Lyapunov exponents, fractional integration and rescaled range. The price forecasting involves structural time series trend plus cycle and cyclical trend models. Practical applications focus on the price behaviour of more than twenty international commodity markets. Project Report from the year 2009 in the subject Engineering - General, Basics, grade: Bachelor of Technology, , language: English, abstract: In this study an attempt was made to analyse the fruit arrival and price patterns in a wholesale fruit market (Haldwani Mandi) for trend and seasonality in order to develop forecasting models for the fruit arrival process so as to rationalize an important input to fruit mandi system design. Historical time series data on monthly arrivals and average monthly prices was collected from the Haldwani mandi records for the period Januay, 1990 to April, 2009. Arrivals and prices of five fruits (Mango, Banana, Apple, Peach and Orange) were considered. A program in MATLAB 7.0 was developed for trend and seasonal analysis. For forecasting, these trend models were extended and seasonal index were applied for each month. Forecasting models were developed on the basis of first 204 months (January 1990 to December 2006) data using time series analysis technique. Forecasts were generated for the next 36 months (January 2007 to December 2009). These forecasts were compared with the actual arrivals for January 2007 to April 2009. Results of the present investigation have shown that arrival of Apple was observed in the month of July, Banana arrived maximum in October, whereas Mango, Orange and Peach recorded maximum arrival in the months of July, August and May respectively. Seasonal indices corresponding to these peak arrivals were 62.66, 136.29, 876.06, 371.17 and 439.89 respectively. In the case of Apple, arrivals and prices were inversely correlated; i.e., prices were low during peak arrival. However, in the case of banana, there was very little correlation; one major reason for this seems to be that the prices of banana did not vary throughout the year. There was a increasing trend in the case of prices. In the trend analysis, it was observed that the arrival of Apple and Orange had a decreasing trend for the years under analysis, whereas Mango and Banana had an increasing trend for this period. The monthly arrival of Peach almost remained the same. Future forecasts were developed for the monthly arrival and average monthly prices of these selected commodities. Maximum error for each forecast was calculated on the basis of peak arrival/ prices in a year and maximum error was obtained as 26.89% in forecasting the arrival of Apple. Master's Thesis from the year 2019 in the subject Computer Science - Miscellaneous, University of Gondar (A t s e Tewodros Campas), course: Information technology, language: English, abstract: Agricultural price predictions are an integral component of trade and policy analysis. As the prices of agricultural commodities directly influence the real income of farmers and it also affects the national foreign currency generate. Sesame is highly produced in some tropical and subtropical rain forest Ethiopia region. The thesis is to build a model that can predict market prices of sesame commodity. Based on the complexity of sesame price prediction; the predicting models used for crop are linear regression, support vector machine and neural network models to predict a future price. A data have been taken from the ECX website (www.ecx.com.et) in the interval of January 2013 to March 2019. The total numbers of records selected to the experiments are 5,327 daily prices are used for proposed models. The experimental result had evaluated by RMSE, MSE and CC metrics. We follow six phase CRISP-DM process model for sesame price prediction. The process phase are, business understanding, data understanding, data preparation, modeling, evaluating and deployment. Uses a problem solving framework to provide students with the means for acquiring the necessary skills in the application of economic theory. Enables them to understand that economic theory does describe authentic relationships with actual people in the existing world.